Attempt any FOUR from the following
1 (a)
How many trees are possible for the given graph :
5 M
1 (b)
By mesh analysis determine the current through 2Ω resistor :
5 M
1 (c)
Find the condition of reciprocity for Z parameters
5 M
1 (d)
Find I, in the circuit if dependent voltage source is
(i) 2V2
(ii) 1.5V3
(i) 2V2
(ii) 1.5V3
5 M
2 (a)
Find the current through 5Ω resistor. :
10 M
2 (b)
Find the Network function \[
\frac{V_1}{I_1}, \frac{V_2}{V_1} \ and \ \frac{V_2}{I_1}
\]
10 M
3 (a)
The switch is changed from position 1 to position 2 at t=0, Steady state having reached before switching. Find values of
\[ i, \frac{di}{dt} \ and \ \frac{d^2i}{dt^2} \ and \ t=0^+ \]
\[ i, \frac{di}{dt} \ and \ \frac{d^2i}{dt^2} \ and \ t=0^+ \]
10 M
3 (b)
In the network, the switch is opened at t=0. Find i(t).
10 M
4 (a)
Write down the tieset matrix & obtain the network equilibrium equation in matrix form using KVL. Calculate loop currents:
10 M
4 (b)
Determine Y & Z parameters for the network
10 M
5 (a)
Synthesize the following function \[
Z\left(s
\right)= \frac{6\left(s+2
\right)\left(s+4
\right)}{s\left(s+3
\right)}\]
Use Foster -II Method.
Use Foster -II Method.
8 M
5 (b)
A driving point R-L admittance function is given by-
\[ y_{RL}\left(s \right)= \frac{s^2+6s+8}{s^2+4s+3} \]
Use cauer - I Method
\[ y_{RL}\left(s \right)= \frac{s^2+6s+8}{s^2+4s+3} \]
Use cauer - I Method
6 M
5 (c)
Synthesize the following YRL(s) using cauer II from
\[ Y_{RL}\left(s \right)= \frac{\left(s+1 \right)\left(s+4 \right)}{s\left(3s+4 \right)} \]
\[ Y_{RL}\left(s \right)= \frac{\left(s+1 \right)\left(s+4 \right)}{s\left(3s+4 \right)} \]
6 M
6 (a)
Find the current I in the network, using superposition theorem.
10 M
6 (b) (i)
Check the given polynomial for Hurwitz
\[ P\left(s \right)=s^5+8s^4+24s^3+28s^2+23s+6 \]
\[ P\left(s \right)=s^5+8s^4+24s^3+28s^2+23s+6 \]
5 M
6 (b) (ii)
Test whether \[
F\left(s
\right)= \frac{{5(s+1)}^2}{s^3+2s^2+2s+40}
\]
is positive real function.
5 M
7
(a) Find the current through 10Ω resistor (Thevenin's theorem).
![]()
(b) Determine the hybrid parameter of the network.
(b) Determine the hybrid parameter of the network.
20 M
More question papers from Circuits and Transmission Lines